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STABILITY OF TWO-DIMENSIONAL TRAVELING WAVES ON A VERTICALLY DRAINING 

LIQUID FILM TO THREE-DIMENSIONAL PERTURBATIONS 

Yu. Ya. Trifonov UDC 532.51 

It is known that for practically all Reynolds numbers waves exist on the surface of a 
liquid layer draining along a vertical tube. This is because the flow of a film with a smooth 
free surface is unstable [i]. Unless special measures are taken (such as the creation of 
uniform conditions around the perimeter of the tube at the inlet) the waves are three-dimen- 
sional and irregular [2] and are extremely sensitive to external perturbations. Hence the 
theoretical or experimental study of a draining film is very difficult. 

The wave flow can be regularized by applying pulsations to the flow rate or by creating 
uniform conditions at the flow inlet [2, 3]. Then there exists a region of two-dimensional 
(annular) regular waves whose length depends strongly on the properties of the liquid and the 
flow rate [3], and which evolves into three-dimensional flow [3]. 

By superimposing pulsations of different frequencies, two-dimensional waves of different 
lengths can be generated. There exist two types of waves with very different properties: 
quasiharmonic and solitary waves [2, 3]. The system of equations of [6] for the instan- 
taneous thickness and flow rate of the liquid was used in [4, 5] to calculate different two- 
dimensional nonlinear steady "traveling waves. Some of these wave processes were found to 
be in good quantitative agreement with experiment. The stability of these wave processes 
to plane infinitesimal perturbations was studied in [7-9] by means of bifurcation analysis. 
Two types of waves were preferred in the sense of stability. These preferred waves will be 
referred to as belonging to the first and second families, and they correspond to the quasi- 
harmonic and solitary waves observed experimentally. 

The equations of [6] were extended to the case of three-dimensional perturbations in 
[i0] by averaging the equations of motion in the direction perpendicular to the layer (the y 
direction) and assuming certain velocity profiles in the x direction (along the gravitational 
acceleration vector) and in the z direction. These equations can be written in the form 

- = - 7  ot h +eh+T 
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~" +OT  x ~ -  z - 0 .  

Here h is the instantaneous thickness of the film; q is the instantaneous flow rate in the 
film in the x direction; Q is the instantaneous flow rate in the z direction; v is the kine- 
matic viscosity; o is the surface tension; g is the acceleration due to gravity; 0 is the 
density of the liquid. 

In the present paper we consider the stability of two-dimensional periodic traveling- 
wave solutions of (i) to three-dimensional perturbations. The stability of traveling two- 
dimensional waves on a film to plane perturbations was first considered in [7]. The stabil- 
ity of waves of the first family was studied in the neighborhood of the neutral stability 
line and it was found that they are unstable to plane perturbations for moderately large 
values of Re. Numerical methods were used in [8, 9] to study the stability of waves of the 
second family and also waves of the first family to plane perturbations for wider intervals 
of wave number and Reynolds number than assumed in [7]. The boundaries of the stable bands 
were found for waves of both families for moderate Re. The main innovation of the present 
paper is the study of the stability of two-dimensional nonlinear waves to three-dimensional 
perturbations in the region where these waves are stable to plane perturbations. 

The two-dimensional periodic waves calculated in [5, 8] ar~ denoted here as h0($) , 
q0(~) (~ = x - ct, c is the phase velocity of the wave). Substituting h(x, z, t) = h0($) + 
h'(~, z, t), q(x, z, t) = q0(~) + q'(~, z, t), Q(x, z, t) = Q'(~, z, t) into (i) and linear- 
izing, we obtain the following equations determining the stability of the solution (h0, %, 
0): 

where 

oq' ot + A Oq' Oh' O~h' qo oo' -~ + Bq' + K - ~  + Dh' - -  3 h o - - ~  + 1,2ho az 

Oh' Oh' ~ OQ' 
at c--~ + + - 5 7 - = 0 ,  

OQ'ot + As176 + _ . . . .  i~3h" _ 3h ~ a'~h" = - -  z~l~ - -  o / z  o - az------- ~ ~ O, 

- -  -- ott o ~ ~ O, 

( 2 )  

qo . d (%1 P" A =  , + 

t ,2 2p 

In (2) the variables have been made dimensionless in accordance with [8]. The basic para- 
meter i s  p = (27Fi/FrRe~O)V ~ [F i  .... (cdp)3/gv ~, Fr = < qo )2/g<ho >a, He -- <qo >/v and t h e  a n g u l a r  b r a c k e t s  
imply an average over the wavelength]. The dimensionless number F and the phase velocity c 
were calculated in [5, 7]. 

Since the variables (t, z) do not appear explicitly in (2), its solution can be written 
in the form 

(It', q', Q') .-= (hL, q~, Ql)e-'P~+~, -~ c . c .  ( 3 )  

(c.c. denotes the complex conjugate and ~ is a real parameter). 

Substitution of (3) into (2) leads to a system of ordinary differential equations with 
periodic coefficients in $: 

~ ( ~ ,  h~, QO = V(q~, h~, QD (4) 

(T. is a matrix differential operator). We consider the stability to bounded perturbations 
in the coordinate ~. It follows from Floquet's theorem that the solutions of (4) have the 
form 

(7. h~, q,) = ~L~ (~(D, ~(~), x(~)). (5) 
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Here ~, ~, %) are periodic functions with the same period X = 2z/~ as the solution (h0, q0) 
being studied for stability; L is a real parameter between zero and one. 

After substituting (5) into (4), the stability problem reduces to finding y such that 
the resulting system of equations has a periodic solution. The numerical algorithms are 
similar to those discussed in [8]. The wave (h0, q0, 0) is stable if the real parts of all 
7 are positive [Real(y) ~ 0] for all values of B and L. 

The stability problem for plane perturbations (6 = O) was studied in [8] and it was 
found that waves of the first family (which correspond to plane-parallel flow when ~ = i) 
are stable against plane perturbations only in a narrow band of wave numbers (and then only 

for p ~ 4 (small Re)). 

The results of the present paper show that waves of the first family are unstable against 
three-dimensional perturbations in the entire region of wave number where these waves exist 
and for all values of p. 

Curves 1-5 of Fig. 1 bound the regions of amplified three-dimensional perturbations for 
waves with e = 0.79, 0.75, 0.6, 0.74, 0.55 (p = i0 for curves 1-3 and p = 1 for curves 4 and 
5). Perturbations with ~ ~ 0.7 are damped. The region of instability is practically sym- 
metric with respect to the line L = 0.5 and so it is not shown completely in Fig. i. 

The calculations also show that the waves are unstable against perturbations of a dif- 
ferent kind, depending on the wave number. This is seen in Fig. i, where there are two un- 
stable regions for ~ = 0.75 (curve 2). A similar result was obtained in [ii], where the 
stability of waves of the first family to three-dimensional perturbations was studied using 
equations holding for Re ~ 1 (large p). The results of our calculations with p ~ i00 agree 
quantitatively with the results of [ii], which is evidence in favor of the assumed equations 
(i). 

In contrast to the results of [ii], our calculations show that only the real parts of 
the eigenvalues vanish on the boundaries of the stable bands, except in certain cases at the 
special points L = 0.5 and 0, where the imaginary parts of the eigenvalues may also vanish. 
In Fig. 1 these special points are L = 0.5 for curves i, 2, 4 and L = 0 for curve 3. Three- 
dimensionally periodic steady traveling waves branch off from these points. 

The growth factor ~r of the amplified perturbations are shown in Figs. 2 and 3 for p = 1 
for waves with e = 0.7 and 0.55, respectively. Perturbations with L = 0.5 are the most crit- 
ical. 

Next, we consider the stability of waves of the second family. It was shown in [8] that 
waves of the second family (unlike waves of the first family) have a set of bands which are 
stable against plane perturbations. It is shown in the present paper that waves of this 
family are unstable against three-dimensional perturbations for the entire wave-number and 
Reynolds number region in which the waves exist. 

In Fig. 4 the curves 1-3 bound the regions of amplified perturbations for the three 
waves e = 0.52, 0.48, 0.46 for p = i0. The value ~ = 0.52 practically corresponds to the 
upper boundary of the existence region of waves of the second family. Calculation of the 
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stability of waves with ~ ~< 0.4 is quite difficult because the initial wave is composed of 
a large number of harmonics. Therefore analytical methods were used to study the stability 
against long-wavelength modulations (small $ and L). 

Introducing the small parameter e(~=V~2 ~_ ~2L~ ' [j __ e sin8, ~L = ~cos8, 0~8~a/2) and 
writing the solution of the system (4) and (5) in the series form 

8 3 

(% % ~) = ~2 ( % ,  q,~, >)~"; v = ~ v,/~, 

to zero order in E we obtain the equation 

Lo(%, %, %o)= ?,,(r ~o, %,,) 

(L0 is a matrix differential operator). The solution of (6) is written as 

(6) 

(%, %, ~o) = ' dT'  0 ,  ?o = 0. 

To order ~i: 

Z,(~I, %, %,) = Y1(%, ~o, Xo) + i cos0  (71, /~, 0) + gsinO(0, 0, /a) (7) 

( f l ,  f2 ,  fa a re  known p e r i o d i c  f u n c t i o n s ) .  The sys tem of e q u a t i o n s  (7)  has a s o l u t i o n  i f  t he  
right-hand side is orthogonal to the solutions of the homogeneous form of the adjoint problem 
to (6). One of the nontrivial solutions of this problem has the form 

(~'*, ~*, Z*):-: (0, t, 0). (8)  

It was verified numerically that there are no other nontrivial solutions of the adjoint prob- 
lem at nonsingular points. 

All three terms on the right-hand side of (7) are orthogonal to (8) and its solution can 
be written in the form 

6h, ~ ,  ~)  - - - ? ~ ( ~ ,  ~2, 0) + i c o s S ( ~ l ,  B2, 0 ) + g s i n S ( 0 ,  0, r), (9)  

where the real periodic functions ~z, a2, ~l, ~2, r are found numerically. The existence 
condition for a solution in the next approximation in ~ gives a quadratic equation for u = 
Ylr + iYli with the solution 

?~=--Rx=--Rxcos 2 0 +  <r>sin 28, 

R~ = <~'> - ~ <~> (<~> - ~ <%> + <%>)= ( l o )  

<%> 4 <%>~ 

1 Here t he  angu la r  b r a c k e t s  deno te  the  ave rage  <%> = ~ .  %(~)d~ and X i s  t he  wave leng th  of 
0 �9 

t he  wave s o l u t i o n  (q0,  h0) .  I f  Rx < 0 then  i t  f o l l o w s  from (10)  t h a t  t he  s o l u t i o n  (q0,  h0) 
i s  u n s t a b l e  to  l ong-wave leng th  p e r t u r b a t i o n s .  I f  Rx > O, then  the  q u a n t i t y  y~ i s  p u r e l y  
imaginary  and then  i t  i s  n e c e s s a r y  to  c o n s i d e r  the  nex t  approx ima t ion  in  ~. 
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From the existence condition for a solution we obtain for 72 = 72r + iY2i a rather com- 
plicated linear equation. Since (I0) has two solutions, there are the two values ~;2(@). The 
wave solution (q0, h0) is stable if both of the values of ~2r are positive. 

In Fig. 5 the regions of amplified long-wavelength perturbations are shaded for different 
waves of the second family (the wave numbers are given in Fig. 5) and for p = 5. The regions 
where the instability increment ~e (Rx < 0) are shown by cross hatching. The wave solution 

with ~ = 0.48 is stable to perturbations with small $ and L, but additional calculations show 
that it is unstable to perturbations with large ~ and L (as in the case of waves of the first 

family with ~ = 0.79 in Fig. I). 

It follows from Fig. 5 and also calculations with other values of p that practically 
all wave solutions of the second family are unstable to long-wavelength three-dimensional 
perturbations, although there exist many bands of stability to plane perturbations (with 

B = o ) .  
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